Serveur d'exploration sur les coopérations entre la France et le Brésil

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Parsing Facades with Shape Grammars and Reinforcement Learning

Identifieur interne : 000398 ( Main/Exploration ); précédent : 000397; suivant : 000399

Parsing Facades with Shape Grammars and Reinforcement Learning

Auteurs : RBID : Pascal:14-0167829

Descripteurs français

English descriptors

Abstract

In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Parsing Facades with Shape Grammars and Reinforcement Learning</title>
<author>
<name sortKey="Teboul, Olivier" uniqKey="Teboul O">Olivier Teboul</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes</s1>
<s2>92290, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Chatenay-Malabry</wicri:noRegion>
<wicri:noRegion>Grande Voie des Vignes</wicri:noRegion>
<wicri:noRegion>92290, Chatenay-Malabry</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Google, Inc., av. Bias Fortes 382, Lourdes</s1>
<s2>Belo Horizonte, MG 30170-010</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
<wicri:noRegion>Belo Horizonte, MG 30170-010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kokkinos, Iasonas" uniqKey="Kokkinos I">Iasonas Kokkinos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Chatenay-Malabry</wicri:noRegion>
<wicri:noRegion>Grande Voie des Vignes</wicri:noRegion>
<wicri:noRegion>92295, Chatenay-Malabry</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Simon, Loic" uniqKey="Simon L">Loic Simon</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Basse-Normandie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Koutsourakis, Panagiotis" uniqKey="Koutsourakis P">Panagiotis Koutsourakis</name>
<affiliation wicri:level="3">
<inist:fA14 i1="05">
<s1>Ecole Centrale Paris-University of Crete, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Chatenay-Malabry</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paragios, Nikos" uniqKey="Paragios N">Nikos Paragios</name>
<affiliation wicri:level="3">
<inist:fA14 i1="06">
<s1>Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Chatenay-Malabry</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0167829</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0167829 INIST</idno>
<idno type="RBID">Pascal:14-0167829</idno>
<idno type="wicri:Area/Main/Corpus">000151</idno>
<idno type="wicri:Area/Main/Curation">002696</idno>
<idno type="wicri:Area/Main/Exploration">000398</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0162-8828</idno>
<title level="j" type="abbreviated">IEEE trans. pattern anal. mach. intell.</title>
<title level="j" type="main">IEEE transactions on pattern analysis and machine intelligence</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bottom up method</term>
<term>Computational complexity</term>
<term>Computer graphics</term>
<term>Data driven modelling</term>
<term>Expected utility</term>
<term>Geometrical shape</term>
<term>Guidance</term>
<term>Imaging</term>
<term>Indoor installation</term>
<term>Markov decision</term>
<term>Markov process</term>
<term>Optimization</term>
<term>Reinforcement learning</term>
<term>Segmentation</term>
<term>Semantics</term>
<term>Syntactic analysis</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse syntaxique</term>
<term>Forme géométrique</term>
<term>Infographie</term>
<term>Apprentissage renforcé</term>
<term>Complexité calcul</term>
<term>Formation image</term>
<term>Installation intérieure</term>
<term>Décision Markov</term>
<term>Guidage</term>
<term>Sémantique</term>
<term>Segmentation</term>
<term>Utilité attendue</term>
<term>Processus Markov</term>
<term>Méthode ascendante</term>
<term>Optimisation</term>
<term>Modèle dirigé par les données</term>
<term>.</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0162-8828</s0>
</fA01>
<fA02 i1="01">
<s0>ITPIDJ</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. pattern anal. mach. intell.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Parsing Facades with Shape Grammars and Reinforcement Learning</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TEBOUL (Olivier)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KOKKINOS (Iasonas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SIMON (Loic)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOUTSOURAKIS (Panagiotis)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARAGIOS (Nikos)</s1>
</fA11>
<fA14 i1="01">
<s1>MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes</s1>
<s2>92290, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Google, Inc., av. Bias Fortes 382, Lourdes</s1>
<s2>Belo Horizonte, MG 30170-010</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Ecole Centrale Paris-University of Crete, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>1744-1756</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222T</s2>
<s5>354000501110050160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0167829</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on pattern analysis and machine intelligence</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Analyse syntaxique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Syntactic analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Análisis sintáxico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Forme géométrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Geometrical shape</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Forma geométrica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Infographie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Computer graphics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Gráfico computadora</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Apprentissage renforcé</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Reinforcement learning</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Aprendizaje reforzado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Complexité calcul</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Computational complexity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Complejidad computación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Formation image</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Imaging</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Formación imagen</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Installation intérieure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indoor installation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Instalación interior</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Décision Markov</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Markov decision</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Decisión Markov</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Guidage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Guidance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Guiado</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sémantique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Semantics</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Semántica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Segmentation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Segmentation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Segmentación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Utilité attendue</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Expected utility</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Utilidad espera</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Processus Markov</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Markov process</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Proceso Markov</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode ascendante</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Bottom up method</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método ascendente</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modèle dirigé par les données</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Data driven modelling</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelo basado en datos</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>209</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=FranceBresilV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000398 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000398 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    FranceBresilV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:14-0167829
   |texte=   Parsing Facades with Shape Grammars and Reinforcement Learning
}}

Wicri

This area was generated with Dilib version V0.6.01.
Data generation: Wed Apr 1 17:49:02 2015. Site generation: Mon Mar 11 12:05:52 2024